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Abstract

This article develops a Bayesian optimization (BO) method which acts directly over
raw strings, proposing the first uses of string kernels and genetic algorithms within
BO loops. Recent applications of BO over strings have been hindered by the need to
map inputs into a smooth and unconstrained latent space. Learning this projection
is computationally and data-intensive. Our approach instead builds a powerful
Gaussian process surrogate model based on string kernels, naturally supporting
variable length inputs, and performs efficient acquisition function maximization
for spaces with syntactical constraints. Experiments demonstrate considerably
improved optimization over existing approaches across a broad range of constraints,
including the popular setting where syntax is governed by a context-free grammar.

1 Introduction

Many tasks in chemistry, biology and machine learning can be framed as optimization problems over
spaces of strings. Examples include the design of synthetic genes [González et al., 2014, Tanaka and
Iwata, 2018] and chemical molecules [Griffiths and Hernández-Lobato, 2020, Gómez-Bombarelli
et al., 2018], as well as problems in symbolic regression [Kusner et al., 2017] and kernel design
[Lu et al., 2018]. Common to these applications is the high cost of evaluating a particular input, for
example requiring resource and labor-consuming wet lab tests. Consequently, most standard discrete
optimization routines are unsuitable, as they require many evaluations.

Bayesian Optimization [Shahriari et al., 2015, BO] has recently risen as an effective strategy to
address the applications above, due to its ability to find good solutions within heavily restricted
evaluation budgets. However, the vast majority of BO approaches assume a low dimensional, mostly
continuous space; string inputs have to be converted to fixed-size vectors such as bags-of-ngrams or
latent representations learned through an unsupervised model, typically a variational autoencoder
[Kingma and Welling, 2014, VAE]. In this work, we remove this encoding step and propose a BO
architecture that operates directly on raw strings through the lens of convolution kernels [Haussler,
1999]. In particular, we employ a Gaussian Process [Rasmussen, 2003, GP] with a string kernel
[Lodhi et al., 2002] as the surrogate model for the objective function, measuring the similarity
between strings by examining shared non-contiguous sub-sequences. String kernels provide an easy
and user-friendly way to deploy BO loops directly over strings, avoiding the expensive architecture
tuning required to find a useful VAE. At the same time, by using a kernel trick to work in much richer
feature spaces than the bags-of-ngrams vectors, string kernels can encode the non-contiguity known
to be informative when modeling genetic sequences [Vert, 2007] and SMILES [Anderson et al., 1987]
representations of molecules [Cao et al., 2012](see Figure 1). We show that our string kernel’s two
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Figure 1: Similar molecules
have SMILES strings with local
differences (red) but common
non-contiguous sub-sequences.

Figure 2: BO loop for molecule design using a string kernel sur-
rogate model (a) and genetic algorithms for acquisition function
maximization (b).

parameters can be reliably fine-tuned to model complex objective functions with just a handful of
function evaluations, without needing the large collections of unlabeled data required to train VAEs.

Devising a BO framework directly over strings raises the question of how to maximize acquisition
functions; heuristics used to select new evaluation points. Standard BO uses numerical methods to
maximize these functions but these are not applicable when the inputs are discrete structures such
as strings. To address this challenge, we employ a suite of genetic algorithms [Whitley, 1994] to
provide efficient exploration of string spaces under a range of syntactical constraints.

Our contributions can be summarized as follows:

• We introduce string kernels into BO, providing powerful GP surrogate models of complex
objective functions with just two data-driven parameters (Figure 2.a).

• We propose a suite of genetic algorithms suitable for efficiently optimizing acquisition
functions under a variety of syntactical constraints (Figure 2.b).

• We demonstrate that our framework out-performs established baselines across four scenarios
encompassing a range of applications and diverse set of constraints.

2 Related Work

BO by feature extraction BO has previously been applied to find genes with desirable features: a
high-cost string optimization problem across a small alphabet of four bases. Genes are represented as
either codon frequencies (a bags-of-ngrams of triplets of characters) [González et al., 2014], or as
a one-hot-encoding of the genes at each location in the string [Tanaka and Iwata, 2018]. Although
these representations are sufficient to allow BO to improve over random gene designs, each mapping
discards information known to be important when modeling genes. A bags-of-ngrams representation
ignores positional and contextual information by modeling characters to have equal effect regardless
of position or context, whereas a one-hot encoding fails to exploit translational invariance. Moreover,
by assuming that all potential genes belong to a small fixed set of candidates, González et al. [2014]
and Tanaka and Iwata [2018] ignore the need to provide an efficient acquisition optimization routine.
This assumption is unrealistic for many real gene design loops and is tackled directly in our work.

BO with VAEs Kusner et al. [2017], Gómez-Bombarelli et al. [2018] and Lu et al. [2018] use VAEs
to learn latent representations for string spaces following the syntactical constraints given by context-
free grammars (CFG). Projecting a variable-length and constrained string space to an unconstrained
latent space of fixed dimensions requires a sophisticated mapping, which in turn requires a lot of data
to learn. As BO problems never have enough string-evaluation pairs to learn a supervised mapping,
VAEs must be trained to reconstruct a large collection of valid strings sampled from the CFG. A
representation learned in this purely unsupervised manner will likely be poorly-aligned with the
problem’s objective function, under-representing variation and over-emphasizing sub-optimal areas
of the original space. Consequently, VAE’s often explore only limited regions of the space and
have ‘dead’ areas that decode to invalid strings [Griffiths and Hernández-Lobato, 2020]. Moreover,
performance is sensitive to the arbitrary choice of the closed region of latent space considered for BO.
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Sub-sequence Occurrence, u
String, s "genic" "geno" "ge"

"genetics" "genetics"
"genetics"
"genetics"

"genomic" "genomic" "genomic" "genomic"

"genomes" "genomes"
"genomes"
"genomes"

Sub-sequence Contribution, cu(s)
"genic" "geno" "ge"
λ5
mλ

2
g 0 λ2

m(1 + λ2
g)

λ5
mλ

2
g λ4

m λ2
m

0 λ4
m λ2

m(1 + λ4
g)

Table 1: Occurrences (left panel) and respective contributions function values (right panel) of sample
sub-sequences when evaluating the strings "genetics", "genomic" and "genomes".

Evolutionary algorithms in BO The closest existing idea to our work is that of Kandasamy et al.
[2018], where an evolutionary algorithm optimizes acquisition functions over a space of neural
network architectures. However, their approach does not support syntactically constrained spaces
and, as it is based solely on local mutations, cannot perform the global search required for large string
spaces. Moreover, as their kernel is based on an optimal transport distance between individual network
layers, it does not model the non-contiguous features supported by string kernels. Contemporaneous
work of Swersky et al. [2020] also considers BO over strings and proposes an evolutionary algorithm
based on generative modeling for their acquisition function optimization. However, their approach
relies on ensembles of neural networks rather than GP surrogate models, is suitable for strings of up
to only 100 characters and does not support spaces with syntactic constraints.

3 Preliminaries

Bayesian Optimization In its standard form, BO seeks to maximize a smooth function f : X → R
over a compact set X ⊂ Rd in as few evaluations as possible. Smoothness is exploited to predict the
performance of not yet evaluated points, allowing evaluations to be focused into promising areas of
the space. BO loops have two key components - a surrogate model and an acquisition function.

Surrogate model To predict the values of f across X , a surrogate model is fit to the previously
collected (and potentially noisy) evaluations Dt = {(xi, yi)}i=1,..,t, where yi = f(xi) + εi for
iid Gaussian noise εi ∼ N (0, σ2). As is standard in the literature, we use a GP surrogate model
[Rasmussen, 2003]. A GP provides non-parametric regression of a particular smoothness controlled
by a kernel k : X × X → R measuring the similarity between two points.

Acquisition function The other crucial ingredient for BO is an acquisition function αt : X → R,
measuring the utility of making a new evaluation given the predictions of our surrogate model. We use
the simple yet effective search strategy of expected improvement (EI): evaluating points yielding the
largest improvement over current evaluations. Although any BO acquisition function is compatible
with our framework, we choose EI as it provides an effective search whilst not incurring significant
BO overheads. Under a GP, EI has a closed form expression and can be efficiently calculated (see
Shahriari et al. [2015]). A single BO loop is completed by evaluating the location with maximal
utility xt+1 = argmaxx∈X αt(x) and is repeated until the optimization budget is exhausted.

String Kernels (SKs) SKs are a family of kernels that operate on strings, measuring their similarity
through the number of sub-strings they share. Specific SKs are then formally defined by the particular
definition of a sub-string they encompass, which defines the underlying feature space of the kernel.
In this work, we employ the Sub-sequence String Kernel (SSK) [Lodhi et al., 2002, Cancedda et al.,
2003], which uses sub-sequences of characters as features. The sub-sequences can be non-contiguous,
giving rise to an exponentially-sized feature space. While enumerating such a space would be
infeasible, the SSK uses the kernel trick to avoid computation in the primal space, enabled via
an efficient dynamic programming algorithm. By matching occurrences of sub-sequences, SSKs
can provide a rich contextual model of string data, moving far beyond the capabilities of popular
bag-of-ngrams representations where only contiguous occurrences of sub-strings are modeled.

Formally, an nth order SSK between two strings a and b is defined as

kn(a,b) =
∑

u∈Σn

cu(a)cu(b) for cu(s) = λ|u|m
∑

1<i1<..<i|u|<|s|

λ
i|u|−i1
g 1u((si1 , .., si|u|)),
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where Σn denotes the set of all possible ordered collections containing up to n characters from our
alphabet Σ, 1x(y) is the indicator function checking if the strings x and y match, and the match decay
λm ∈ [0, 1] and gap decay λg ∈ [0, 1] are kernel hyper-parameters. Intuitively, cu(s) measures the
contribution of sub-sequence u to string s, and the choices λm and λg control the relative weighting
of long and/or highly non-contiguous sub-strings (Table 1). To allow the meaningful comparison of
strings of varied lengths, we use a normalized string kernel k̃n(a,b) = kn(a,b)/

√
kn(a, a)kn(b,b).

4 Bayesian Optimization Directly On Strings

In string optimization tasks, we seek the optimizer s∗ = argmaxs∈S f(s) of a function f across a set
of strings S. In this work, we consider different scenarios for S arising from three different types of
syntactical constraints and a sampling-based approach for when constraints are not fully known. In
Section 5 we demonstrate the efficacy of our proposed framework across all four scenarios.

1. Unconstrained Any string made exclusively from characters in the alphabet Σ are allowed.
S contains all these strings of any (or a fixed) length.

2. Locally constrained S is a collection of strings of fixed length, where the set of possible
values for each character depends on its position in the string, i.e. the character si at location
i belongs to the set Σi ⊆ Σ.

3. Grammar constrained S is the set of strings made from Σ that satisfy the syntactical rules
specified by a context-free grammar.

4. Candidate Set. A space with unknown or very complex syntactical rules, but for which we
have access to a large collection S of valid strings.

4.1 Surrogate Models for String Spaces

To build a powerful model across string spaces, we propose using an SSK within a GP. However,
the vanilla SSK presented above is not immediately suitable due to its substantial computational
cost. In contrast to most applications of GPs, BO surrogates are trained on small datasets and so the
computational bottleneck is not inversion of Gram matrices. Instead, the primary contributors to cost
are the many kernel evaluations required to maximize acquisition functions. Therefore, we develop
two modifications to improve the efficiency and scalability of our SSK.

Efficiency Using the dynamic program proposed by Lodhi et al. [2002], obtaining a single evaluation
of an nth order SSK is O(nl2), where l = max(|a|, |b|). For our applications where many kernel
evaluations are to be made in parallel, we found the vectorized formulation of Beck and Cohn [2017]
to be more appropriate. Although, having a larger complexity ofO(nl3), a vectorized formulation can
exploit recent advancements in parallel processing and in practice was substantially faster. Moreover,
Beck and Cohn [2017]’s formulation provides gradients with respect to the kernel parameters,
allowing their fine-grained tuning to a particular optimization task. We found the particular string
kernel proposed by Beck and Cohn [2017] — with individual weights for each different sub-sequence
length — to be overly flexible for our BO applications. We adapt their recursive algorithm for our
SSK (Appendix A).

Scalability Even with a vectorized implementation, SSKs are computationally demanding for long
strings. Comprehensively tackling the scalability of string kernels is beyond the scope of this work
and is an area of future research. However, we perform a simple novel approximation to allow
demonstrations of BO for longer sequences: we split sequences into m parts, applying separate string
kernels (with tied kernel parameters) to each individual part and summing their values. This reduces
the complexity of kernel calculations from O(nl3) to O(nl3/m2) without a noticeable effect on
performance (Section 5.2). Moreover, the m partial kernel calculations can be computed in parallel.

4.2 Acquisition function optimization over String Spaces

We now present a suite of routines providing efficient acquisition function optimization under
different types of syntactical constraints. In particular, we propose using genetic algorithms (GA)
[Whitley, 1994], biologically inspired optimization routines that successively evaluate and evolve
populations of n strings. Candidate strings undergo one of two stochastic perturbations: a mutation
operation producing a new offspring string from a single parent, and a crossover operation combining
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Figure 3: Mutations and crossover of arithmetic
expressions following the grammar:
S → S ‘+’ T | S ‘∗’ T | S ‘/’ T | T
T → ‘ sin (’ S ‘)’ | ‘exp(’ S ‘)’ | ‘x’ | ‘1’ .

Figure 4: Performance and computational over-
head when searching for binary strings of length
20 with the most non-overlapping occurrences
of "101" (higher is better).

attributes of two parents to produce two new offspring. GAs are a natural choice for optimizing
acquisition functions as they avoid local maxima by maintaining diversity and the evolution can be
carefully constructed to ensure compliance to syntactical rules. We stress that GAs require many
function evaluations and so are not suitable for optimizing a high-cost objective function, just for
this ‘inner-loop’ maximization. To highlight robustness, the parameters of our GAs are not tuned to
our individual experiments (Appendix F). When syntactical rules are poorly understood and cannot
be encoded into the optimization, we recommend the simple but effective strategy of maximizing
acquisition functions across a random sample of valid strings.

GAs for unconstrained and locally constrained string spaces For our first two types of syntacti-
cal constraints, standard definitions of crossover and mutation are sufficient. For mutation, a random
position i is chosen and the character at this point is re-sampled uniformly from the set of permitted
characters Σi (or just Σ) for locally constrained (unconstrained) spaces. For crossover, a random
location is chosen within one of the parent strings and the characters up until the crossover point are
swapped between the parents. Crucially, the relative positions of characters in the strings are not
changed by this operation and so the offspring strings still satisfy the space’s constraints.

GA for grammar-constrained string spaces Context free grammars (CFG) are collections of
rules able to encode many common syntactical constraints (see Appendix B and Hopcroft et al.
[2001]). While it is difficult to define character-level mutation and crossover operations that maintain
grammatical rules over strings of varying length, suitable operations can be defined over parse trees,
structures detailing the grammatical rules used to make a particular string. Following ideas from
grammar-based genetic programming [Mckay et al., 2010], mutations randomly replace sub-trees
with new trees generated from the same head node, and crossover swaps two sub-trees sharing a head
node between two parents (see Figure 3). When sampling strings from the grammar to initialize
our GA and perform mutations, the simple strategy of building parse trees by recursively choosing
random grammar rules produces long and repetitive sequences. We instead employ a sampling
strategy that down-weights the probability of selecting a particular rule based on the number of times
it has already occurred in the current parse tree branch (Appendix C).

5 Experiments

We now evaluate our proposed BO framework on tasks from a range of fields and syntactical
constraints. Our code is available at github.com/henrymoss/BOSS and is built upon the Emukit Python
package [Paleyes et al., 2019]. All results are based on runs across 15 random seeds, showing the mean
and a single standard error of the best objective value found as we increase the optimization budget.
The computational overhead of BO (the time spent fitting the GP and maximizing the acquisition
function) is presented as average wall-clock times. Although acquisition function calculations could
be parallelized across the populations of our GA at each BO step, we use a single-core Intel Xeon
2.30GHz processor to paint a clear picture of computational cost.
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Problem Definition Mean performance with std error (2 s.f.)
Objective Space Steps SSK (ga) SSK (rs) Feature (ga) Linear (ga) RS
# of "101" {0, 1}20 10 100 (0.0) 96 (1.4) 97 (2.2) 58 (3.0) 58 (2.6)
# of "101", no overlaps {0, 1}20 15 98 (1.4) 94 (2.6) 76 (4.1) 64 (2.6) 60 (3.1)
# of "10??1" {0, 1}20 25 98 (1.6) 95 (1.6) 64 (2.0) 64 (3.3) 56 (2.0)
# of "101" in 1st 15 chars {0, 1}30 40 91 (2.6) 83 (1.7) 67 (3.0) 69 (2.6) 61 (2.3)
# of "101" + N (0, 2) {0, 1}20 25 98 (2.1) 95 (1.4) 51 (3.9) 40 (4.0) 45 (3.8)
# of "123" {0, .., 3}30 20 81 (2.3) 35 (2.8) 69 (5.4) 23 (2.0) 17 (1.5)
# of "01??4" {0, .., 4}20 50 67 (4.5) 38 (2.6) 35 (4.0) 33 (3.1) 29 (2.6)

Table 2: Optimization of functions counting occurrences of a particular pattern within strings of
varying lengths and alphabets ("?" matches any single character). Evaluations are standardized
∈ [0, 100] and higher scores show superior optimization. Our SSK provides particularly strong
performance for complicated patterns (red) or when evaluations are contaminated with Gaussian
noise (blue). Our GA acquisition maximizer is especially effective for large alphabets (yellow).

Considered BO approaches For problems with fixed string-length, we compare our SSK with
existing approaches to define GP models over strings. In particular, we apply the squared exponential
(SE) kernel [Rasmussen, 2003] to a bags-of-ngrams feature representation of the strings. SSKs
(feature) representations consider sub-sequences of up to and including five non-contiguous (con-
tiguous) characters, with additional choices demonstrated in Appendix D. We also provide a linear
kernel applied to one-hot encodings of each character, a common approach for BO over categorical
spaces. The strategy of sequentially querying random strings is included for all plots and we introduce
task-specific baselines alongside their results. After a random initialization of min(5, |Σ|) evaluations,
kernel parameters are re-estimated to maximize model likelihood before each BO step.

5.1 Unconstrained Synthetic String Optimization

We first investigate a set of synthetic string optimization problems over unconstrained string spaces
containing all strings of a particular length built from a specific alphabet. Objective functions are then
defined around simple tweaks of counting the occurrence of a particular sub-string. Although these
tasks seem simple, we show in Appendix D that they are more difficult than the synthetic benchmarks
used to evaluate standard BO frameworks. The results for seven synthetic string optimization tasks
are included in Table 2, with a deeper analysis of a single task in Figure 4. Additional figures for the
remaining tasks showing broadly similar behavior are included in the supplement. To disentangle the
benefits provided by the SSK and our GA, we consider two acquisition optimizers: random search
across 10, 000 sample strings (denoted rs and not to be confused with the random search used to
optimize the original objective function) as well as our genetic algorithms (ga) limited to ≤ 100
evolutions of a population of size 100. The genetic algorithm is at most as computationally expensive
(in terms of acquisition function evaluations) as the random search optimizer, but in practice is usually
far cheaper due to the GA’s early-stopping.

Figure 4 demonstrates that our approach provides highly efficient global optimization, dramatically
out-performing random search and BO with standard kernels. Interestingly, although the majority of
our approach’s advantage comes from the SSK, our genetic algorithm also contributes significantly
to performance, out-performing the random search acquisition function optimizer in terms of both
optimization and computational overhead. Although SSKs incur significant BO overheads, they
achieve high-precision optimization after far fewer objective queries, meaning a substantial reduction
in overall optimization costs for all but the cheapest objective functions. Table 2 shows that our
approach provides superior optimization across a range of tasks designed to test our surrogate model’s
ability to model contextual, non-contiguous and positional information.

5.2 Locally Constrained Protein Optimization

For our second set of examples, we consider the automatic design of genes that strongly exhibit some
particular property. We follow the set-up of González et al. [2014], which optimizes across the space
of all the genes encoding a particular protein. Proteins are sequences made from 20 amino acids, but
redundancy in genetic coding means that individual proteins can be represented by many distinct
genes, each with differing biological properties. For this experiment, we seek protein representations
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(`,m) = (30, 1) (`,m) = (186, 2) (`,m) = (360, 8) (`,m) = (3672, 64)

Figure 5: Finding the representation with minimal minimum free-folding energy (MFE) for proteins
of length `. SSKs are applied to codon or base representations split into m or 3m parts, respectively.

with minimal minimum free-folding energy, a fundamental biological quantity determined by how a
protein ‘folds’ in 3-D space. The prediction of the most likely free-folding energy for large sequences
remains an important open problem [AlQuraishi, 2019], whereas calculating the minimal free-folding
energy (across all possible folds) is possible for smaller sequences using the ViennaRNA software
[Lorenz et al., 2011]. We acknowledge that this task may not be biologically meaningful on its own,
however, as free-folding energy is of critical importance to other down-stream genetic prediction
tasks, we believe it to be a reasonable proxy for wet-lab-based genetic design loops. This results in
a truly challenging black-box string optimization, requiring modeling of positional and frequency
information alongside long-range and non-contiguous relationships.

Each amino acid in a protein sequence can be encoded as one of a small subset of 64 possible codons,
inducing a locally constrained string space of genes, where the set of valid codons depends on the
position in the gene (i.e the particular amino acid represented by that position). Alternatively, each
codon can be represented as triples of the bases (A,C,T,G), forming another locally constrained
string space of three times the length of the codon representation but with a smaller alphabet size of
4. As well as applying the linear and feature kernels to the base representations, we also consider
the domain-specific representation used by González et al. [2014] (denoted as Bio-Features) that
counts codon frequencies and four specific biologically inspired base-pairs. Figure 5 demonstrates
the power of our framework across 4 proteins of varying length. Additional details and wall-clock
timing are provided in Appendix E. SSKs provide particularly strong optimization for longer proteins,
as increasing the length renders the global feature frequencies less informative (with the same
representations used for many sequences) and the linear kernel suffers the curse of dimensionality.
Note that unlike existing BO frameworks for gene design, our framework explores the large space of
all possible genes rather than a fixed small candidate set.

5.3 Grammar Constrained String Optimization

We now consider a string optimization problem under CFG constraints. As these spaces contain
strings of variable length and have large alphabets, the linear and feature kernel baselines considered
earlier cannot be applied. However, we do consider the VAE-based approaches of Kusner et al. [2017]
and Gómez-Bombarelli et al. [2018] denoted GVAE and CVAE for a grammar VAE and character
VAE, respectively. We replicate the symbolic regression example of Kusner et al. [2017], using their
provided VAEs pre-trained for this exact problem. Here, we seek a valid arithmetic expression that
best mimics the relationship between a set of inputs and responses, whilst following the syntactical
rules of a CFG (Appendix B). We investigate both BO and random search in the latent space of
the VAEs, with points chosen in the latent space decoded back to strings for objective function
evaluations (details in Appendix F). We sample 15 strings for initialization of our GPs, which, for
the VAE-approaches, are first encoded to the latent space, before being decoded for evaluation. The
invalid strings suggested by CVAE are assigned large error.

Figure 6 shows that our approach is able to provide highly efficient BO across a space with complicated
syntactical constraints, out-performing the VAE methods which are beaten by even random search (a
comparison not made by Kusner et al. [2017]). The difference in starting values for the performance
curves in Figure 6 is due to stochasticity when encoding/decoding; initial strings are rarely decoded
back to themselves but instead mapped back to a less diverse set. However, sampling directly in the
latent space led to a further decrease in initialization diversity. We stress that CVAE and GVAE were
initially designed as models which, using BO-inspired arguments, could generate new valid strings
outside of their training data. Consequently, they have previously been tested only in scenarios with
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Figure 6: Searching for
arithmetic expressions
satisfying constraints
from a CFG (lower is
better).

Figure 7: Searching
a candidate set for
molecules with desir-
able properties (higher
is better).

Figure 8: Top KPCA components for our
SSK (left) and an SE kernel in the GVAE
(right) for SMILES strings. Our SSK has
a smoother internal representation, where
‘close’ points are structurally similar.

significant evaluation budgets. To our knowledge, we are the first to analyze their performance in the
low-resource loops typical in BO.

5.4 Optimization Over a Candidate Set

Finally, we return to the task introduced briefly in Figure 2 of searching over SMILES strings to find
molecules with desirable properties. As the validity of SMILES strings are governed by complex
semantic and syntactic rules that can only be partly explained by a context-free grammar [Kraev,
2018], it is not obvious how to define a GA acquisition function optimizer that can explore the space
of all valid molecules. Therefore, we consider an alternative task of seeking high-scoring molecules
from within the large collection of 250, 000 candidate molecules used by Kusner et al. [2017] to train
a CVAE and GVAE. Once again, we stress that Kusner et al. [2017]’s primary motivation is to use a
large evaluation budget to generate new molecules outside of the candidate set, whereas we consider
the simpler but still realistic task of efficiently exploring within the set’s limits. At each BO step,
we sample 100 candidates, querying those that maximize the acquisition function predicted by our
SSK as well as by GPs with SE kernels over the VAE latent spaces. Figure 7 shows that only the
SSK allows efficient exploration of the candidate SMILES strings. We hypothesize that the VAEs’
poor performance may be partly due to the latent space’s dimension which, at 56, is likely to severely
hamper the performance of any BO routine.

SSK’s internal representations A common way to investigate the efficacy of VAEs is to examine
their latent representations. However, even if objective evaluations are smooth across this space
[Kusner et al., 2017], this smoothness cannot be exploited by BO unless successfully encapsulated by
the surrogate model. Although GPs have no explicit latent space, they have an intrinsic representation
that can be similarly examined to provide visualization of a surrogate model’s performance. In
particular, we apply kernel principal component analysis (KPCA) [Schölkopf et al., 1997] to visualize
how SMILES strings map into the feature space. Figure 8 shows the first two KPCA components of
our SSK and of an SE kernel within the GVAE’s latent space (additional visualizations in Appendix
G). Although the latent spaces of the GVAE is known to exhibit some smoothness for this SMILES
task [Kusner et al., 2017], the smoothness is not captured by the GP model, in contrast with the SSK.

6 Discussion

Departing from fixed-length representations of strings revolutionizes the way in which BO is per-
formed over string spaces. In contrast to VAEs, where models are learned from scratch across
thousands of parameters, an SSK’s structure is predominantly fixed. By hard-coding prior linguistic
intuition about the importance of incorporating non-contiguity, our SSKs have just two easily iden-
tifiable kernel parameters governing modeling of a particular objective function. We posit that the
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additional flexibility of VAEs is not advantageous in BO loops, where there is never enough data to
reliably learn flexible models and where calibration is more important than raw predictive strength.

As well as achieving substantially improved optimization, we provide a user-friendly BO building-
block that can be naturally inserted into orthogonal developments from the literature, including batch
[González et al., 2016], multi-task [Swersky et al., 2013], multi-fidelity [Moss et al., 2020b] and
multi-objective [Hernández-Lobato et al., 2016] BO, as well as BO with controllable experimental
noise [Moss et al., 2020a] (all with obvious applications within gene and chemical design loops).
Moreover, our framework can be extended to other kinds of convolution kernels such as tree [Collins
and Duffy, 2002] and graph kernels [Vishwanathan et al., 2010]. This would allow the optimization
of other discrete structures that have previously been modeled through VAEs, including networks
[Zhang et al., 2019] and molecular graphs [Kajino, 2019].

Broader Impact

The primary contribution of our work is methodological, providing an efficient and user-friendly
framework for optimizing over discrete sequences. As noted in the paper, this is a broad class of
problems with a growing interest in the machine learning literature. We hope that our accessible code
base will encourage the deployment of our method by practitioners and researchers alike.

We have highlighted two real-world applications by demonstrating efficiency improvements within
automatic gene and molecule design loops. Such gains are of considerable interest to biological and
chemical research labs. Reducing the wet-lab resources required when searching for chemicals or
genes with desirable properties provides not only a substantial environmental and monetary saving,
but can even enable new technologies. For example, a fast search over genes is a necessary step in
providing custom medical treatments.

On the other hand, wherever our method can be applied to find structures with beneficial properties, it
could similarly be used to find structures with malicious properties. Although the optimization itself
is automatic, a human should always has the final say in how a particular optimized structure is to be
used. This decision making process should in turn incorporate any ethical frameworks specific to the
task at hand.
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A Dynamic Programs For SSK Evaluations and Gradients

We now detail recursive calculation strategies for calculating kn(a,b) and its gradients with O(nl3)
complexity. A recursive strategy is able to efficiently calculate the contributions of particular sub-
string, pre-calculating contributions of the smaller sub-strings contained within the target string.

Adapting the recursion and notation of Beck and Cohn [2017] to our chosen contribution function,
kn(a,b) can be calculated by following for i = 1, ..n:

K′0 = 1

K′i = DT|a|K
′′
i D|b|

K′′i = λ2
m(M�K′i−1)

ki = λ2
m

∑
j,k

(M�K′i)j,k,

producing the kernel evaluation kn(a,b) =
∑n
i=1 ki. Here, � is the Hadamard product, M is the

|a| × |b| matrix of character matches between the two strings (Mij = 1ai(bj)), and D` is the `× `
matrix

D` =


0 1 λg · · · λ`−2

g

0 0 1 · · · λ`−3
g

...
...

...
. . .

...
0 0 0 · · · 1
0 0 0 · · · 0

 .

The gradients of kn with respect to the kernel parameters λm and λg can also be calculated recursively.
For the kernel gradients with respect to match decay we calculate

∂K′0
∂λm

= 0

∂K′i
∂λm

= DT|a|
∂K′′i
∂λm

D|b|

∂K′′i
∂λm

= 2λm(M�K′i−1) + λ2
m

(
M�

∂K′i−1

∂λm

)
∂ki
∂λm

=
∑
j,k

[
2λm(M�K′ijk) + λ2

m

(
M�

∂K′ijk
∂λm

)]
,

producing the gradient ∂kn(a,b)
∂λm

=
∑n
i=1

∂ki
∂λm

.

Similarly, kernel gradients with respect to gap decay are calculated by

∂K′0
∂λg

= 0

∂K′i
∂λg

=
∂DT|a|
∂λg

K′′i D|b| + DT|a|
∂K′′i
∂λg

D|b| + DT|a|K
′′
i

∂D|b|
∂λg

∂K′′i
∂λg

= λ2
m

(
M�

∂K′i−1

∂λg

)
∂ki
∂λg

= λ2
m

∑
j,k

(
M�

∂K′ijk
∂λg

)
,

producing the gradient ∂kn(a,b)
∂λg

=
∑n
i=1

∂ki
∂λg

, where ∂D`

∂λg
is the `× ` matrix
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∂D`
∂λg

=



0 0 1 2λg 3λ2
g · · · (`− 2)λ`−3

g

0 0 0 1 2λg · · · (`− 3)λ`−4
g

0 0 0 0 1 · · · (`− 4)λ`−5
g

...
...

...
...

...
. . .

...
0 0 0 0 0 · · · 1
0 0 0 0 0 · · · 0


.

B Context-free Grammars

Context-free grammars (CFG) are 4-tuples G = (V,Σ, R, S), consisting of:

• a set of non-terminal symbols V ,
• a set of terminal symbols Σ (also known as an alphabet),
• a set of production rules R,
• a non-terminal starting symbol S from which all strings are generated.

Production rules are simple maps permitting the swapping of non-terminals with other non-terminals
or terminals. All strings generated by the CFG can be broken down into a (non-unique) tree of
production rules with the non-terminal starting symbol S at its head. These are known as the parse
trees and are demonstrated in Figure 3 in the main paper.

The CFG for the symbolic regression task of Section 5.3 is given by the following rules:

S → S ‘+’ T
S → S ‘∗’ T
S → S ‘/’ T
S → T
T → ‘(’ S ‘)’
T → ‘ sin (’ S ‘)’
T → ‘exp(’ S ‘)’
T → ‘x’
T → ‘1’
T → ‘2’
T → ‘3’ ,

where V = {S, T} and Σ = {+, ∗, /, x, 1, 2, 3}. Although each individual production rule is a
simple replacement operation, the combination of many such rules can specific a string space with
complex syntactical constraints. For example, these 11 rules are able to specify that the string
‘(sin(2*x)+3(x*(2+exp(x))))+1/2’ is valid but that ‘(sin(2*x)+3(x*(2+exp(x)))+1/2’ (with invalid
bracket closing) is not.

Sampling from the CFG. One of the advantages of CFGs is that it is easy (and cheap) to generate
large collections of valid strings by recursively sampling production rules. However, when sampling
strings from the grammar, we found this simple sampling strategy to produce long and repetitive
strings. For our BO applications, where sample diversity is key, we instead employed a sampling
strategy that down-weights the probability of selecting a particular rule based on the number of times
it has already occurred in the parse tree. In particular, the probability of applying a particular rule to a
non-terminal is proportional to cn, where n is the number of occurrences of that rule in the current
branch and c is a discount factor (set to 0.1 in all our experiments). The construction of this sampler
ensures that a wide range of production rules are used when generating from the CFG.

C Genetic Algorithms

We now provide implementation details for our GA acquisition function optimizers. During each
GA step, populations are refined through stochastic biologically-inspired operations, providing a
population achieving (on average) higher scores. The GA begins with a randomly sampled population
and ends once the best string in the population stops improving between iterations (Algorithm 1). The
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Algorithm 1 Genetic Algorithms for Acquisition Function Maximization
1: function GA(pt, pc, pm, N )
2: n← 0
3: Sample N strings for initial population P0

4: Evaluate acquisition function A0 ← α(P0)
5: Store current best value αbest ← max(A0)
6: while αbest = max(An) do
7: Begin new iteration n← n+ 1
8: Evolve population Pn ← EVOLVE(Pn−1, pt, pc, pm)
9: Evaluate acquisition function An ← α(Pn)

10: Store current best value αbest ← max(max(An−1), αbest)

11: return String achieving score αbest

Algorithm 2 Evolution of Genetic Algorithm Populations
1: function EVOLVE(P ,pt, pc, pm)
2: Initialize new population Pnew ← ∅
3: while |Pnew| < |P | do
4: Collect a candidate string s1 ← TOURNAMENT(P, pt)
5: Sample r ∼ U [0, 1]
6: if r < pc then
7: Sample another candidate string s2 ← TOURNAMENT(P, pt)
8: Perform crossover s1, s2 ← CROSSOVER(s1, s2)
9: Sample r1, r2 ∼ U [0, 1]

10: if r1 < pm then
11: Perform mutation s1 ←MUTATION(s1)

12: if r2 < pm then
13: Perform mutation s2 ←MUTATION(s2)

14: Add two strings to new population Pnew ← Pnew
⋃
{s1, s2}

15: else
16: Sample r ∼ U [0, 1]
17: if r1 < pm then
18: Perform mutation s1 ←MUTATION(s1)

19: Add string to new population Pnew ← Pnew
⋃
{s1}

20: return New population Pnew

N strings of the i+ 1th population are perturbations of the ith population. To evolve a population
(Algorithm 2), a tournament process first selects n candidate strings (with replacement) attaining the
highest evaluations across random sub-samples of a proportion pt of the current population. To create
the next population, these candidate strings undergo stochastic perturbations: a mutation operation
producing a new offspring string from a single parent, and a crossover operation combining attributes
of two parent strings to produce two new offspring. These operations occur with probability pc and
pm respectively, which, alongside pt, control the level of diversity maintained across populations. To
highlight the robustness of our genetic algorithm acquisition optimizer, we do not tune the evolution
parameters to each task, using populations of 100 candidate strings and (pt, pc, pm) = (0.5, 0.75, 0.1)
for all our experiments. The exact crossover and mutation operators chosen to traverse string spaces
under different syntactical constraints are discussed in the main paper.
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Figure 9: Comparing random search across stan-
dard BO benchmarks (faint) and our synthetic
string experiments (bold). For the string tasks,
the legend ALS denoted the task with an alpha-
bet of size A, strings of length L and counting
the occurrences of the pattern S.

Figure 10: Optimizing the number of non-
overlapping occurrences of "101" in a string of
length 20 and alphabet ["0","1"]

D Synthetic String Optimization Experiments

Although seemingly simple tasks, our synthetic string optimization tasks of Section 5.1 are deceptively
challenging, as only a very small proportion of valid strings produce high scores. In fact, these
tasks are considerably more challenging than the common benchmarks used to test standard BO
frameworks. Figure 9, shows the performance attained by random search over our synthetic string
tasks and standard benchmarks 1. All objective functions are standardized (∈ [0, 1]) and we run
1000 optimization steps, plotting the mean and standard error across 25 replications. We see that our
easiest synthetic string optimization tasks are among the hardest of the standard benchmark problems
to solve with random search, and we expect this to hold similarly for BO.

We now provide comprehensive experimental results across the synthetic string optimization tasks.
In Figures 10,11,12,13,14,15 and 16, we show the performance and computational overhead of our
string kernels, extending the analysis from the main paper to include a variety of sub-sequence
lengths considered by the string and feature-based kernels. We see that the string kernels always
provide superior optimization over existing kernels, with the string kernel based on sub-sequences
of maximum length 5 consistently among the best. The string kernel is particularly effective for the
most complicated objective functions (Figures 11 and 15) and when observations are contaminated
by observation noise (Figure 14). For problems with larger alphabets (and so significantly larger
search spaces), our genetic algorithm acquisition optimizer dramatically outperforms a larger budget
random search optimizer (Figure 13 and 15).

1https://www.sfu.ca/ ssurjano/index.html
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Figure 11: Optimizing the number of occur-
rences of "10??1" in a string of length 20 and
alphabet ["0","1"]

Figure 12: Optimizing the number of occur-
rences of "101" in the first half of a string of
length 30 and alphabet ["0","1"].

Figure 13: Optimizing the number of occur-
rences of "123" of a string with length 30 and an
alphabet of ["0","1","2","3"].

Figure 14: Optimizing the number of occur-
rences of "101" with observations contaminated
by Gaussian noise (with a variance of 2) of a
binary string of length 20.

Figure 15: Optimizing the number of occur-
rences of "01??4" in a string of length 20 and
alphabet ["0","1","2,"3","4"]

Figure 16: Optimizing the number of occur-
rences of "101" in a string of length 20 and al-
phabet ["0","1"]
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E Protein Optimization

We now provide additional details for our four protein optimization experiments, each targeting one
of the following proteins.

1. Cystic fibrosis transmembrane conductance regulator:
TIKENIFGVS.

2. Invertebrate iridescent virus 6 (IIV-6) (Chilo iridescent virus):
MTSRGHLRRAPCCYAFKSATSHQRTRTSLCLASPPAPHCLLLYSHRCLTYFTVDYELSFFCL.

3. Anaphase-promoting complex subunit 15B:
MSTLFPSLLPQVTDSLWFNLDRPCVDENELQQQEQQHQAWLLSIAEKDSSLVPIGKPASEPY
DEEEEEDDEDDEDSEEDSEDDEDMQDMDEMNDYNESPDDGEIEADMEGAEQDQDQWMI.

4. Tyrosine-protein kinase abl-1:
MGHSHSTGKEINDNELFTCEDPVFDQPVASPKSEISSKLAEEIERSKSPLILEVSPRTPDSV
QMFRPTFDTFRPPNSDSSTFRGSQSREDLVACSSMNSVNNVHDMNTVSSSSSSSAPLFVALY
DFHGVGEEQLSLRKGDQVRILGYNKNNEWCEARLYSTRKNDASNQRRLGEIGWVPSNFIAPY
NSLDKYTWYHGKISRSDSEAILGSGITGSFLVRESETSIGQYTISVRHDGRVFHYRINVDNT
EKMFITQEVKFRTLGELVHHHSVHADGLICLLMYPASKKDKGRGLFSLSPNAPDEWELDRSE
IIMHNKLGGGQYGDVYEGYWKRHDCTIAVKALKEDAMPLHEFLAEAAIMKDLHHKNLVRLLG
VCTHEAPFYIITEFMCNGNLLEYLRRTDKSLLPPIILVQMASQIASGMSYLEARHFIHRDLA
ARNCLVSEHNIVKIADFGLARFMKEDTYTAHAGAKFPIKWTAPEGLAFNTFSSKSDVWAFGV
LLWEIATYGMAPYPGVELSNVYGLLENGFRMDGPQGCPPSVYRLMLQCWNWSPSDRPRFRDI
HFNLENLISSNSLNDEVQKQLKKNNDKKLESDKRRSNVRERSDSKSRHSSHHDRDRDRESLH
SRNSNPEIPNRSFIRTDDSVSFFNPSTTSKVTSFRAQGPPFPPPPQQNTKPKLLKSVLNSNA
RHASEEFERNEQDDVVPLAEKNVRKAVTRLGGTMPKGQRIDAYLDSMRRVDSWKESTDADNE
GAGSSSLSRTVSNDSLDTLPLPDSMNSSTYVKMHPASGENVFLRQIRSKLKKRSETPELDHI
DSDTADETTKSEKSPFGSLNKSSIKYPIKNAPEFSENHSRVSPVPVPPSRNASVSVRPDSKA
EDSSDETTKDVGMWGPKHAVTRKIEIVKNDSYPNVEGELKAKIRNLRHVPKEESNTSSQEDL
PLDATDNTNDSIIVIPRDEKAKVRQLVTQKVSPLQHHRPFSLQCPNNSTSSAISHSEHADSS
ETSSLSGVYEERMKPELPRKRSNGDTKVVPVTWIINGEKEPNGMARTKSLRDITSKFEQLGT
ASTIESKIEEAVPYREHALEKKGTSKRFSMLEGSNELKHVVPPRKNRNQDESGSIDEEPVSK
DMIVSLLKVIQKEFVNLFNLASSEITDEKLQQFVIMADNVQKLHSTCSVYAEQISPHSKFRF
KELLSQLEIYNRQIKFSHNPRAKPVDDKLKMAFQDCFDQIMRLVDR.

As each amino acid in these protein sequences can be represented as one of a set of possible codons
(triples of bases), the string spaces for these problems are incredibly large, with each space containing
5.53e+4, 9.48e+33, 4.81e+49 and 1.22e+614 unique strings, respectively. The permitted mappings
from amino acids to valid codons are as follows:
F→ ttt | ttc
L → tta | ttg | ctt | ctc | cta , ctg
S → tct | tcc | tca | tcg | agt |agc
Y → tat | tac
C→ tgt | tgc
W→ tgg
P→ cct |ccc|cca|ccg
H→ cat |cac
Q→ caa|cag
R→ cgt |cgc|cga|cgg|aga|agg
I → att | atc |ata
M→ atg
T → act |acc|aca|acg
N→ aat |aac
K→ aaa|aag
V→ gtt | gtc |gta |gtg
A→ gct |gcc|gca|gcg
D→ gat |gac
E→ gaa|gag
G→ ggt |ggc|gga|ggg.

Figure 17 extends the analysis of our protein optimization tasks to include the computational overheads
incurred by each each BO routine (as measured on a single processor). The high evaluation costs
of our SSK means that its overhead is substantially greater than the other approaches. However, in
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(a) (`,m) = (30, 1) (b) (`,m) = (186, 2)

(c) (`,m) = (360, 8) (d) (`,m) = (3672, 64)

Figure 17: Optimization performance and computational overhead when finding the representation
with minimal minimum free-folding energy (MFE) of a protein of length `. SSKs are applied to codon
or base representations split into m or 3m parts, respectively.

real gene design loops, this additional computational cost (hours) is negligible compared to the cost
and time saved in wet-lab experiments (days). Moreover, the acquisition function calculations can be
trivially parallelized across up to 100 cores (the size of the populations used in the GA acquisition
function optimizer) as well as across the m partial SSK calculations. If GPUs are available, these can
also be used to efficiently calculate SSKs [Beck and Cohn, 2017].

F BO in a VAE’s Latent Space

To perform BO in the latent space of a VAE, we follow the set-up of Kusner et al. [2017], fitting a
GP with an SE kernel and using a multi-start gradient descent acquisition function optimizer. We
tried SE kernels with both individual and tied length scales across latent dimensions, however, this
did not have a significant effect on performance, possibly due to difficulties in estimating many
kernel parameters in these low-data BO problems. In order to perform BO, a compact area of the
latent space must be chosen for the search space. Unfortunately, Kusner et al. [2017] do not provide
details about how this should be determined. We chose the space containing the most central 75% of
representations from the set of strings used to train the VAE (100, 000 arithmetic expressions). We
also tried using the space containing all representations from the training data, however, this led to a
drop in optimization performance, likely due to less reliable encoding/decoding learned by the VAE
in these more sparsely supported parts of the latent space.
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(a) SSK on raw SMILES strings. (b) SE kernel in the CVAE latent space.

(c) SE kernel in the GVAE latent space. (d) SSK with poor choices of kernel parameters.

Figure 18: Top two KPCA components visualizing the intrinsic representations of the surrogate
models used to predict molecule scores from SMILES strings. Aside from (d), kernel parameters are
tuned to maximize GP likelihood over 10 evaluated molecules.

G Visualizing BO Surrogate Models

In Section 5.4, we present a kernel principal component analysis (KPCA) visualization of the feature
space induced by our SSK. We now extend this analysis to include the VAE competitors. In particular,
we perform KPCA on the SE kernel used to define a surrogate model over each VAE’s latent
representations (Figure 18). All figures show the representations of the same sampled 4, 000 SMILES
strings, color-coded to represent their molecule scores (a linear combination of their water-octanol
partition coefficient, ring-size and synthetic accessibility). We see that the GP with an SSK produces
a significantly smoother KPCA space that the GPs fit in VAE latent space, with the CVAE showing
slightly more structure than the GVAE. This ranking matches the relative performance of the BO
routines based on these surrogate models (Figure 7). So although the latent spaces of these VAE
have been shown to exhibit some smoothness [Kusner et al., 2017], this is not captured by the GP
model. Figure 7.d visualizes the intrinsic representation of an SSK when kernel parameters are
purposely chosen to provide a bad fit. We choose very low λm and high λg to heavily penalize
the long contiguous sub-sequences we know to be informative for this task. The stark difference
in smoothness between the visualizations of the tuned and badly-tuned SSKs demonstrates their
flexibility as well as the importance of using a representation supervised to the the specific objective
function of interest.
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