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Abstract

We present FlowMO: an open-source Python library for molecular property predic-
tion with Gaussian Processes. Built upon GPflow and RDKit, FlowMO enables
the user to make predictions with well-calibrated uncertainty estimates, an output
central to active learning and molecular design applications. Gaussian Processes
are particularly attractive for modelling small molecular datasets, a characteristic
of many real-world virtual screening campaigns where high-quality experimental
data is scarce. Computational experiments across three small datasets demonstrate
comparable predictive performance to deep learning methods but with superior
uncertainty calibration.

1 Introduction
In the early stages of exploring a new class of drug molecules or molecular material, there is often
only a small quantity of high-quality experimental data available [Thawani et al., 2020, Griffiths
et al., 2018]. In contrast to the big data regime of established molecule classes, where much of the
information regarding performance has already been acquired, it is the small data regime which holds
most promise for techniques such as Bayesian optimization [Gómez-Bombarelli et al., 2018, Korovina
et al., 2020, Griffiths and Hernández-Lobato, 2020, Tripp et al., 2020, Moss et al., 2020a] and active
learning [Zhang and Lee, 2019] to expedite the rate at which novel and performant molecules are
discovered.

The current trend in molecular machine learning research has been to leverage Bayesian deep learning
to provide the uncertainty estimates which underpin active learning and Bayesian optimization
methods [Ryu et al., 2019, Zhang and Lee, 2019, Hwang et al., 2020, Scalia et al., 2020]. Deep
learning methods, however, are often not the model of choice for small datasets. In fact, leading
experts on deep learning have expressed a preference for Gaussian Processes (GPs) [Rasmussen,
2004] for small datasets [Bengio, 2011]. Furthermore, Bayesian deep learning methods rely on
approximate inference in order to produce uncertainty estimates. In contrast, GPs admit exact
inference at the expense of computationally prohibitive cost for very large datasets. In this paper, we
compare calibration of the uncertainty estimates of GPs against a popular Bayesian deep learning
method as well as against the recently-introduced attentive neural process [Kim et al., 2019].

Applying GPs to molecules in non-trivial, as the vast majority of existing applications of GPs assume
inputs of low and fixed dimension. This assumption is not satisfied for the popular molecular
representations of fingerprints [Rogers and Hahn, 2010] and SMILES strings [Weininger, 1988],
sparse high-dimensional bit vectors and strings of variable length, respectively. To build GPs over
molecules, FlowMO provides GPU-supported implementations of the Tanimoto and string kernels,
providing a user-friendly way to make probabilistic predictions, whilst avoiding the expensive
architecture tuning and model optimization often required to find effective deep learning models.

Our primary contributions can be summarized as follows. (1) We propose a GP framework for
molecular property prediction using Tanimoto and string kernels. (2) We provide an open-source
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Figure 1: SMILES strings for structurally
similar molecules have local differences
(red) but common non-contiguous sub-
sequences (black).

Figure 2: Fingerprints provide high-dimensional
binary representations of molecules by encod-
ing fragments whose size is dictated by a pre-
specified bond radius.

Python implementation built upon GPflow[De G. Matthews et al., 2017] and RDKit [Landrum, 2013],
addressing the absence of GP support in popular libraries such as DeepChem [Ramsundar et al., 2019],
DGL-LifeSci [Wang et al., 2020] and ASAP Cheng et al. [2020]. (3) We compare FlowMO with
established baselines across three benchmark datasets with plans for a more extensive comparison of
uncertainty calibration.

2 Molecular Representations
To apply GPs to molecules, we need a meaningful way to represent molecules. FlowMO currently
supports two popular representations: SMILES and ECFP fingerprints.

SMILES strings. The Simplified Molecular-Input Line-Entry System (SMILES) [Weininger, 1988]
is a procedure for expressing molecules as character strings. Each SMILES string is assembled by
traversing the molecule’s chemical graph. Two SMILES strings for structurally similar pyridine deriva-
tives are presented in Figure 1. The alphabet of SMILES strings contains letters representing aliphatic
and aromatic atoms (B,C,N,O, S, P, F,Cl,Br, I, b, c, n, o, s, p), parentheses and integers, as well
as additional ASCII symbols representing bonds and the presence of rings (−,=,#,&, /, \, .,%).

ECFP fingerprints. ECFP fingerprints are high-dimensional bit vector representations of molecules
[Christie et al., 1993] designed to search chemical databases and in the context of kernel-based
classification have been used in conjunction with support vector machines [Ralaivola et al., 2005].
In this work, we consider extended-connectivity (ECFP) fingerprints [Rogers and Hahn, 2010] as
generated by the RDKit library [Landrum, 2013]. ECFP fingerprints are calculated with an iterative
procedure. First, each atom is represented in terms of its local properties, for example its atomic
mass and valency. These local representations are then updated based on the representations of its
neighbors, iteratively building representations of all fragments containing as many atoms as the
chosen bond radius of the fingerprint. Finally, duplicates structures are removed and the remaining
representations are hashed into a unique bit vector (see Figure 2). For our experiments, we use
2048-bit ECFP fingerprints with a bond radius of 3.

3 Molecular Property Prediction with Gaussian Processes
Given a training set of (possibly noisy) experimentally-determined molecular properties and a kernel
function k measuring intermolecular similarity, Gaussian processes (See Rasmussen [2004] for a
comprehensive introduction) provide tractable Gaussian predictive distributions for the properties
of any out-of-sample target molecule. In FlowMO, we provide a kernel for each of our supported
molecular representations (as introduced above): a Sub-sequence String Kernel (SSK) and a Tanimto
Kernel (TK) suitable for measuring the similarity between SMILES strings of varying length and
high-dimensional binary fingerprint vectors, respectively.

The computational complexity of training and inference for the GP are O(n3 + n2C) and O(nC),
where n is the number of training molecules and C is the cost of a single kernel evaluation. Although
there exist many methods that reduce the computational complexity of GPs (for example Hensman
et al. [2013]), they are designed with smooth input spaces in mind and do not yet support molecular
data. In practice, we found standard GPs to be adequate for the datasets considered in this paper, and
furthermore they can be comfortably applied to larger data sets using FlowMO’s GPU support.
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String Kernels. Sub-sequence String Kernels [Lodhi et al., 2002, Cancedda et al., 2003] measure the
similarity of strings through the number of shared sub-strings, naturally supporting variable length
inputs. The considered sub-strings can be non-contiguous, yielding a rich contextual model of string
data that encapsulates the non-contiguity known to be important when characterising inter-SMILES
similarity (Figure 1). To avoid enumeration of an exponentially-scaled feature space, SSKs exploit
the kernel trick through an efficient dynamic programming algorithm, allowing individual kernel
calculations between two strings s and s′ to be calculated in C = O(max(|s|, |s′|)2) operations.
FlowMO’s SSK implements the vectorized formulations of Beck and Cohn [2017] and Moss et al.
[2020a], enabling efficient computation on GPUs. FlowMO’s SSKs have two kernel parameters λm
and λg controlling the relative weighting of long and/or highly non-contiguous sub-strings. In all our
experiments, we set n = 5 and learn appropriate values for λg and λm through the standard practice
of maximising the marginal likelihood of the GP.

Tanimoto Kernels. To build a GP model over fingerprint representations of molecules, we employ
a kernel based on the Tanimoto similarity measure from the chemoinformatics literature [Gower,
1971, Fligner et al., 2002, Ralaivola et al., 2005]. Note that ECFP fingerprints contain � 1000
binary entries, each flagging the occurrence of particular features, and so have length and sparsity
unsuitable for standard GP kernels designed for low-dimensional continuous spaces. The Tanimoto
Kernel (TK) measures the similarity between two molecules via their fingerprints by the number of
features present in both molecules normalized by the number of features occurring separately, i.e
k(f, f′) = σ2f · f′/(f · f + f′ · f′ − f · f′), where f denotes a fingerprint representation and σ2 is a single
kernel hyper-parameter. The complexity of each kernel evaluation is simply C = O(|f|).

4 Experimental Validation
We now evaluate FlowMO (available at anonymized link) across three small molecular property
prediction datasets.

1. The Photoswitch Dataset [Thawani et al., 2020]: a collection of 392 photoswitch molecules
and their experimental E isomer π = π∗ transition wavelengths.

2. ESOL [Delaney, 2004]: the logarithmic aqueous solubility for 1128 organic small molecules.
3. FreeSolv [Mobley and Guthrie, 2014]: experimental hydration free energies for 642

molecules.

Both ESOL and FreeSolv are part of the MoleculeNet dataset collection widely used for the bench-
marking of molecular property prediction models [Wu et al., 2018], whereas the Photoswitch Dataset
is a recent benchmark designed to specifically investigate the properties of light-activated molecules.

We compare the performance of our SSK and TK GPs with a range of existing molecular property
prediction models. We report the scores of the best found model during the extensive testing of
molecular graph-based models detailed in Wu et al. [2018] namely a graph convolutional network
(GCN) [Kipf and Welling, 2016] for the Photoswitch Dataset and a message passing neural network
(MPNN) [Gilmer et al., 2017] for ESOL and FreeSolv. These scores are regarded as very strong
benchmarks, only recently improved upon for ESOL and FreeSolv by SMILES-X [Lambard and
Gracheva, 2020]. SMILES-X is a sophisticated model that relies on extensive hyperparameter
optimization and requires data augmentation via augmented random SMILES. We include the
performance of SMILES-X pre and post augmentation. Across all three data sets, we also consider a
black-box alpha divergence minimization Bayesian Neural Network (BNN) [Hernandez-Lobato et al.,
2016] and an Attentive Neural Process (ANP) [Kim et al., 2019] applied to fingerprint representations.
Our ANP and BNN follow the exact implementation described by [Thawani et al., 2020], with
hyperparameters tuned by grid search. Further details are available in the supplementary information.
Reported scores for all methods are based on 20 random train/validation/test splits in an 80:10:10
ratio, except for the GPs which need no validation set and so can be applied to 90:10 train/test splits.

4.1 Predictive Performance
Table 1 demonstrates the predictive performance of the models, showing the mean and a single
standard deviation of the root-mean-squared error (RMSE). The best GP models outperform the
ANP and BNN, and achieve comparable performance to both the MoleculeNet collection and the
pre-augmentation SMILES-X models. Only the substantially more computationally demanding
augmented SMILES-X model is able to significantly outperform the GPs and only on the FreeSolv
data. The SSK GP outperforms the TK GP on all but the Photoswitch Dataset, suggesting that
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Table 1: RMSE of the models across the three datasets, with the scores of the best GP model and
best overall model highlighted .

Photoswitch ESOL FreeSolv

SSK GP (SMILES) 26.0 ± 3.6 0.65 ± 0.04 1.29 ± 0.22
TK GP (Fingerprints) 22.6 ± 4.0 0.98 ± 0.08 1.85 ± 0.10
ANP 27.2 ± 3.7 1.32 ± 0.13 2.65 ± 0.47
BNN 25.5 ± 5.0 1.01 ±0.11 1.92 ± 0.20
MoleculeNet 22.0 ± 3.5 0.58 ± 0.03 1.15 ± 0.02
SMILES-X - 0.70 ± 0.05 1.14 ± 0.17
SMILES-X (Augm) - 0.57 ± 0.07 0.81 ± 0.22

Photoswitch ESOL FreeSolv

Figure 3: Calibration scores for the probabilistic models. We see reliable calibration among
our GP models, with the SSK GP achieving almost perfect calibration (as represented by the
diagonal black dotted line) for Photoswitch and FreeSolv.

SMILES strings are useful representations for predicting aqueous solubility and hydration free
energies, but ECFP fingerprints are especially informative for modeling transition wavelengths
highlighting the importance of feature engineering for molecular property prediction tasks.

4.2 Calibration
To analyze the calibration achieved by the predictive distributions provided by the probabilistic
models (only the GPs, BNN and ANP), we define a calibration score function

C(q) =
1

|T |
∑
m∈T

[
1

(∣∣∣∣ ŷ(m)− y(m)

σ̂(m)

∣∣∣∣ < Φ−1
(

1 + q

2

))]
based on cross-validatory predictive p-values [Marshall and Spiegelhalter, 2003, Leslie et al., 2007].
y(m), ŷ(m) and σ̂(m) represent true values, predictive means and predictive standard deviations for
each test molecule m ∈ T , and Φ−1 is the inverse of the standard Gaussian cumulative distribution
function. The indicator 1 is activated only when the true value is contained in the model’s q ∗ 100%
confidence interval. Therefore, perfect calibration at the qth quantile corresponds to C(q) = q.
C(q) > q indicates under-confidence through overly large uncertainty estimates (limiting the strength
of conclusions that can be drawn from the model) whereasC(q) < q denotes over-confidence (leading
to reckless decisions downstream). We plot C(q) for our probabilistic models as Figure 3.

5 Future Work
We have presented an analysis of GPs for molecular property prediction and uncertainty quantification.
Future work will extend this analysis in three ways. Firstly, as string kernels operate directly on
SMILES strings, we will explore if the data augmentation strategy exploited by SMILES-X can
yield a similar performance boost for our SSK GPs. Secondly, we wish to consider GPs built
upon additional kernels belonging to the broad class of convolutions kernels that includes our SSK.
For example, graph kernels [Vishwanathan et al., 2010] could be used to define GPs directly over
molecular graphs, enabling a comparison with recent work on graph-based deep learning methods
[Yang et al., 2019, Hwang et al., 2020]. Finally, FlowMO will allow us to apply the extended Bayesian
optimization methods designed for GP models to further improve efficiency in automatic wet-lab
workflows [MacLeod et al., 2020]. Potential extensions include batch [González et al., 2016], multi-
task [Swersky et al., 2013], multi-fidelity [Moss et al., 2020c] and multi-objective [Hernández-Lobato
et al., 2016] optimization, as well as optimization with controllable experimental noise [Moss et al.,
2020b].

4



References
D. Beck and T. Cohn. Learning kernels over strings using gaussian processes. In Proceedings of the Eighth

International Joint Conference on Natural Language Processing, 2017.

Y. Bengio. What are some Advantages of Using Gaussian Process Models vs Neural Networks?,
2011. https://www.quora.com/What-are-some-advantages-of-using-Gaussian-Process-
Models-vs-Neural-Networks.

N. Cancedda, E. Gaussier, C. Goutte, and J.-M. Renders. Word-sequence kernels. Journal of Machine Learning
Research, 2003.

B. Cheng, R.-R. Griffiths, S. Wengert, C. Kunkel, T. Stenczel, B. Zhu, V. L. Deringer, N. Bernstein, J. T.
Margraf, K. Reuter, and G. Csanyi. Mapping materials and molecules. Accounts of Chemical Research, 53(9):
1981–1991, 2020. doi: 10.1021/acs.accounts.0c00403. URL https://doi.org/10.1021/acs.accounts.
0c00403. PMID: 32794697.

B. D. Christie, B. A. Leland, and J. G. Nourse. Structure searching in chemical databases by direct lookup
methods. Journal of chemical information and computer sciences, 1993.

A. G. De G. Matthews, M. Van Der Wilk, T. Nickson, K. Fujii, A. Boukouvalas, P. León-Villagrá, Z. Ghahramani,
and J. Hensman. Gpflow: A gaussian process library using tensorflow. The Journal of Machine Learning
Research, 18(1):1299–1304, 2017.

J. S. Delaney. Esol: estimating aqueous solubility directly from molecular structure. Journal of chemical
information and computer sciences, 2004.

M. A. Fligner, J. S. Verducci, and P. E. Blower. A modification of the jaccard–tanimoto similarity index for
diverse selection of chemical compounds using binary strings. Technometrics, 2002.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for quantum
chemistry. In Proceedings of the 34th International Conference on Machine Learning, 2017.

R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato, B. Sánchez-Lengeling, D. Sheberla,
J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams, and A. Aspuru-Guzik. Automatic chemical design using a
data-driven continuous representation of molecules. ACS central science, 2018.

J. González, Z. Dai, P. Hennig, and N. Lawrence. Batch bayesian optimization via local penalization. In Artificial
intelligence and statistics, 2016.

J. C. Gower. A general coefficient of similarity and some of its properties. Biometrics, 1971.

R. Griffiths, P. Schwaller, and A. Lee. Dataset bias in the natural sciences: A case study in chemical reaction
prediction and synthesis design. 2018.

R.-R. Griffiths and J. M. Hernández-Lobato. Constrained bayesian optimization for automatic chemical design
using variational autoencoders. Chemical science, 11(2):577–586, 2020.

J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In Uncertainty in Artificial
Intelligence, 2013.

D. Hernández-Lobato, J. Hernandez-Lobato, A. Shah, and R. Adams. Predictive entropy search for multi-
objective Bayesian optimization. In International Conference on Machine Learning, 2016.

J. Hernandez-Lobato, Y. Li, M. Rowland, T. Bui, D. Hernández-Lobato, and R. Turner. Black-box alpha
divergence minimization. In International Conference on Machine Learning, pages 1511–1520, 2016.

D. Hwang, G. Lee, H. Jo, S. Yoon, and S. Ryu. A benchmark study on reliable molecular supervised learning
via bayesian learning. arXiv preprint arXiv:2006.07021, 2020.

H. Kim, A. Mnih, J. Schwarz, M. Garnelo, A. Eslami, D. Rosenbaum, O. Vinyals, and Y. W. Teh. Attentive
neural processes. arXiv preprint arXiv:1901.05761, 2019.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

K. Korovina, S. Xu, K. Kandasamy, W. Neiswanger, B. Poczos, J. Schneider, and E. Xing. Chembo: Bayesian
optimization of small organic molecules with synthesizable recommendations. In International Conference
on Artificial Intelligence and Statistics, pages 3393–3403. PMLR, 2020.

5

https://www.quora.com/What-are-some-advantages-of-using-Gaussian-Process-Models-vs-Neural-Networks
https://www.quora.com/What-are-some-advantages-of-using-Gaussian-Process-Models-vs-Neural-Networks
https://doi.org/10.1021/acs.accounts.0c00403
https://doi.org/10.1021/acs.accounts.0c00403


G. Lambard and E. Gracheva. Smiles-x: autonomous molecular compounds characterization for small datasets
without descriptors. Machine Learning: Science and Technology, 2020.

G. Landrum. Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling,
2013.

D. S. Leslie, R. Kohn, and D. J. Nott. A general approach to heteroscedastic linear regression. Statistics and
Computing, 2007.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using string kernels.
Journal of Machine Learning Research, 2002.

B. P. MacLeod, F. G. Parlane, T. D. Morrissey, F. Häse, L. M. Roch, K. E. Dettelbach, R. Moreira, L. P. Yunker,
M. B. Rooney, J. R. Deeth, et al. Self-driving laboratory for accelerated discovery of thin-film materials.
Science Advances, 2020.

E. Marshall and D. Spiegelhalter. Approximate cross-validatory predictive checks in disease mapping models.
Statistics in medicine, 2003.

D. L. Mobley and J. P. Guthrie. Freesolv: a database of experimental and calculated hydration free energies,
with input files. Journal of computer-aided molecular design, 2014.

H. B. Moss, D. Beck, J. Gonzalez, D. L. Leslie, and P. Rayson. Bayesian optimisation over string spaces. In
Advances in neural information processing systems, 2020a.

H. B. Moss, D. S. Leslie, and P. Rayson. Bosh: Bayesian optimization by sampling hierarchically. arXiv preprint
arXiv:2007.00939, 2020b.

H. B. Moss, D. S. Leslie, and P. Rayson. Mumbo: Multi-task max-value bayesian optimization. arXiv preprint
arXiv:2006.12093, 2020c.

L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi. Graph kernels for chemical informatics. Neural networks,
2005.

B. Ramsundar, P. Eastman, P. Walters, V. Pande, K. Leswing, and Z. Wu. Deep Learning for the Life Sciences.
O’Reilly Media, 2019. https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/
dp/1492039837.

C. E. Rasmussen. Gaussian processes in machine learning. In Advanced Lectures on Machine Learning. 2004.

D. Rogers and M. Hahn. Extended-connectivity fingerprints. Journal of chemical information and modeling,
2010.

S. Ryu, Y. Kwon, and W. Y. Kim. A bayesian graph convolutional network for reliable prediction of molecular
properties with uncertainty quantification. Chemical Science, 10(36):8438–8446, 2019.

G. Scalia, C. A. Grambow, B. Pernici, Y.-P. Li, and W. H. Green. Evaluating scalable uncertainty estimation
methods for deep learning-based molecular property prediction. Journal of Chemical Information and
Modeling, 2020.

K. Swersky, J. Snoek, and R. P. Adams. Multi-task Bayesian optimization. In Advances in Neural Information
Processing Systems, 2013.

A. R. Thawani, R.-R. Griffiths, A. Jamasb, A. Bourached, P. Jones, W. McCorkindale, A. A. Aldrick, and A. A.
Lee. The photoswitch dataset: A molecular machine learning benchmark for the advancement of synthetic
chemistry. arXiv preprint arXiv:2008.03226, 2020.

A. Tripp, E. Daxberger, and J. M. Hernández-Lobato. Sample-efficient optimization in the latent space of deep
generative models via weighted retraining. arXiv preprint arXiv:2006.09191, 2020.

S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt. Graph kernels. Journal of Machine
Learning Research, 2010.

M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis,
J. Li, and Z. Zhang. Deep graph library: A graph-centric, highly-performant package for graph neural
networks, 2020.

D. Weininger. Smiles, a chemical language and information system. 1. introduction to methodology and encoding
rules. Journal of chemical information and computer sciences, 1988.

6

https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837
https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837


Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu, K. Leswing, and V. Pande.
Moleculenet: a benchmark for molecular machine learning. Chemical science, 2018.

K. Yang, K. Swanson, W. Jin, C. Coley, P. Eiden, H. Gao, A. Guzman-Perez, T. Hopper, B. Kelley, M. Mathea,
et al. Analyzing learned molecular representations for property prediction. Journal of chemical information
and modeling, 59(8):3370–3388, 2019.

Y. Zhang and A. A. Lee. Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular
properties and active learning. Chemical Science, 10(35):8154, 2019.

A Broader Impact

As mentioned in the main body of the paper, calibrated uncertainty estimates are highly important for
the successful implementation of techniques which depend on them such as Bayesian Optimization
and active learning. To this end, Gaussian Processes are an important, yet somewhat neglected method
(in the molecular machine learning domain) for producing well-calibrated uncertainty estimates for
small datasets. It is our hope that through the provision of a bespoke library for Gaussian Processes
for molecular property prediction, we can enhance the efficacy of downstream Bayesian Optimization
and active learning campaigns in discovering promising drug molecules and molecular materials in
the laboratory.

B Hyper-parameter Settings

For the ESOL and FreeSolv data, hyper-parameters were selected by validation on an 80/10/10
train/validation/test split. For the Photoswitch data a split of 80/20 train/test was required in order to
maintain consistency with the results reported in Thawani et al. [2020]. In this latter case, validation
was performed by taking the original train set (80) and splitting this in the ratio of 90/10. Following
hyper-parameter selection, the models were then re-trained using these hyper-parameters on the
original train set.

For the BNN, a grid search was performed over the number of nodes per layer, the learning rate, the
batch size as well as the number of iterations for the ADAM optimizer. The α hyper-parameter was
fixed at 0.5 and the number of samples was fixed at 100. ReLU activations were the only activation
functions considered and the number of layers was fixed to 2.

For the ANP, a grid search was performed over the number of nodes in the deterministic encoder,
the number of nodes in the latent encoder and the number of nodes in the decoder in addition to the
learning rate, the batch size and the number of training iterations. The dimensionality of the context
encoding was fixed to 8. The number of layers for the deterministic encoder, the latent encoder and
the decoder was fixed to 2 in each case. The number of samples to take of the context set was fixed to
10.
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